Connect # OpenShift Virtualization Modernization Through Migration Koray Şeremet Senior Manager, Solution Architecture # Reality of enterprise IT environments Mixed infrastructure environments, diverse app portfolios, & limited automation #### Infrastructure Bare metal Virtualization Edge Private cloud Public cloud ### **Applications** AI/ML Cloud-native and microservices ISV Java™ Serverless .Net ### People & Processes Developer tools The right skills **Pipeline** and processes People and policies ### The move from Virtual Machines to Containers # What is OpenShift Virtualization? - ☐ Virtual machine running in containers - ☐ Using KVM hypervisor - Scheduled, managed and deployed by Kubernetes - ☐ Using kubernetes resources and services - Persistence with storage Class or PVC # What is OpenShift Virtualization? - Included feature of the OpenShift - → RHEL guest entitlements are included. - Supports Microsoft Windows guests Microsoft Server Virtualization Validation Program (SVVP) # KubeVirt becomes a CNCF incubating project KubeVirt collaborates and integrates with many other Cloud Native projects 30 Releases (since Sandbox) 337 Contributors 133 Contributing Companies # Leverage the Entire CNCF Project Ecosystem KubeVirt¹ **CNCF Ecosystem Projects²** 133 157 Contributing Companies CNCF Incubating project Observability & Alerting (Prometheus) L2 Networking (Multus, Kube-OVN) Service Meshes (Istio) Automation (Tekton, ArgoCD) Workload migration (Konveyor) ² https://www.cncf.io/reports/cncf-annual-report-2022/ ### Bring traditional VMs into OpenShift ### Modernize at your own pace ### Traditional VM behavior in a modern platform - Administrator concepts and actions - Network connectivity - Live migration ### Leverage existing VM roles and responsibilities - Maintain business critical application components - Modernize skill sets over time ### **Migration Tooling** - Migration Toolkit for Virtualization (MTV) - Warm migration of VMs at scale Creating a migration plan with MTV ### Fragmented 'approach' to VM provisioning ### A process that can take weeks trapped in queues and iterations #### Virtual Machine - CPU: 4 vCPU, 1 core - Memory: 16GB - Disk: 30 GB - OS: RHFI #### Additional filesystems - data: 500GB, disk - ▶ logs: 100GB, partition #### Application platform JBoss 7.4 Update 11 #### Firewall rules - ► Ingress: SSH, HTTPS - Egress: *.redhat.com - api.service.org - ► Healthcheck: HTTPS port #### **Execute workflow** - Review & approve - Assign IP & hostname - Configure DNS (host) #### **Execute workflow** - Review & approve - Allocate volumes - Whitelist source IP #### **Execute workflow** - Review & approve - ▶ Install JBoss 7.4u11 - Configure MW #### **Execute workflow** - Review & approve - Install security tools - VM hardening #### **Execute workflow** - Review & approve - ► Configure LB & DNS - Configure FW **Networking** team (1-3 days) Storage team (1-2 days) **Platform** team (1-2 days) Security team (2-4 days) Networkina team (2-7 days) #### DNS & LB #### **Execute workflow** - Review & approve - Queue to networking & storage teams - Create VM from virtualization template and custom parameters - ▶ Add disks and partitions and re-configure OS with custom filesystems - Install corporate tools and configure default users and permissions - Queue to platform team - Queue to security team - Queue to networking team - ▶ Hand over the VM: IP, credentials and metadata Request for a new Virtual Machine Virtualization team (1-3 days) VM Ready? ### Self-service VM by Project Assign roles and collaborate around Projects as you would in the cloud ### Application-centric Technologies with Virtual Machines - Virtual machines utilize OpenShift and Kubernetes functionality natively - Service, Route - GitOps - Pipelines / Tekton - and others - Containerized and virtualized app components don't know whether the other is virtual or containerized - OpenShift Virtualization brings the benefits of Kubernetes without containerizing the application ### Next Gen approach to VM provisioning A process that can be optimized down to a few minutes #### **Virtual Machine** ► CPU: 4 vCPU, 1 core Memory: 16GB ▶ Disk: 30 GB OS: RHEL #### **Additional filesystems** ▶ data: 500GB, disk ▶ logs: 100GB, partition #### **Application platform** ▶ JBoss 7.4 Update 11 #### Firewall rules ► Ingress: SSH, HTTPS ► Egress: *.redhat.com #### **DNS & LB** api.service.org Healthcheck: HTTPS port VM image **OpenShift** Virtualization cloud-init VM template Manage networks, storage, load balancers, etc. ### Consolidate OpenShift Clusters Hosted Control Planes with KubeVirt provider - Consolidate multiple control planes to reduce unused and underutilized infrastructure - Increase bare metal node utilization by hosting virtual worker nodes for multiple clusters Underlying virtualization layer is included with hosted OpenShift cluster entitlements (no separate licensing needed) ### Secondary networks using OVN-Kubernetes ``` apiVersion: k8s.cni.cncf.io/v1beta1 kind: MultiNetworkPolicy metadata: name: ingress-ipblock annotations: k8s.v1.cni.cncf.io/policy-for: default/flatl2net spec: podSelector: matchLabels: name: access-control policyTypes: - Ingress ingress: - from: - ipBlock: cidr: 10.200.0.0/30 ``` ## Core Enterprise Capabilities | Currently Supported | Near | Future | |--|--|--| | Core Functionality | | | | Live Migration between nodes Infrastructure & Application fencing Performance and Limits Parity Microsoft SVVP certification, any currently supported Microsoft Windows RHEL VMs Hot pluggable disks / VM disk resize Network hotplug DRS / CPU overcommit GPU passthrough / vGPU support Non-disruptive upgrades | CPU Hotplug Microsoft Windows Server Failover Cluster (WSFC) Persistent vTPM support UEFI and Secure boot support | Higher density with safe memory overcommit Real-Time VMs ARM based systems | # Storage and Networking | Currently Supported | Near | Future | |--|--|--| | Storage, Backup and DR | | | | Storage profiles for all major storage providers – ODF, Netapp, Pure/Portworx, Dell, Hltachi, HPE, IBM VM export Backup / restore with OADP Portworx support for Metro-DR and Async-DR Kasten K10 by Veeam Trilio TVK Storware vProtect Networking | NetApp Astra data protection for VMs Metro-DR (Sync) with ODF | Regional-DR (Async) w/ ODF OADP to support data mover for block volume | | DPDK (TP) SR-IOV Dual-stack IPv4 & IPv6 Flat L2 secondary networks using Multus Service Mesh Flat L2 Overlay network without the need to configure host networking Secondary network ipBlock policies and microsegmentation | DPDK (GA) OVN Kubernetes localnet as an alternative to the Bridge CNI | Single-stack IPv6 Hardware offload IPAM Port mirroring Services over a secondary OVN Kubernetes Localnet QinQ | # Management | | Currently Supported | Near | Future | |----------------|--|--|--| | \bigcirc | DevOps and Platform Engineering | | | | | Deploy and Configure virtual machines
using Tekton pipelines Multi-cluster management using ACM and
AgoCD Self-service and users roles | Example Git repo w/ best practices Tekton pipeline to upload customised VMs to Git Repositories Deploy hosted OpenShift Clusters with Hosted Control Planes | · Developer Hub / Backstage | | () III | VM Management and Observability | | | | | Warm migration at scale from VMware, RHV (MTV) Cold migration from OpenStack (MTV) Overview dashboards for VMs and Cluster Individual VM ops & detailed dashboards Prometheus metrics can be integrated with external monitoring Templates for VM deployment Cloud-like experience to create VMs | Consistent set of APIs Integrations with provisioning and management tools VM guest boot and application logging Integrate infra logs with Loki Virtualization Overall Health Metric Actionable Telemetry Historical trending & identify anomalies OpenShift Virtualization Insight rules Ansible collection for VM provisioning | User-defined instance types Additional Ansible collections Multi-cluster VM management (ACM) Multi-cluster virtualization monitoring (with ACM) | | 17 | | · Ansible collection for vivi provisioning | | ### Connect # Thank you linkedin.com/company/red-hat facebook.com/redhatinc youtube.com/user/RedHatVideos twitter.com/RedHat